RIKEN BRAIN SCIENCE INSTITUTE (RIKEN BSI)

Faculty Detail / 研究室詳細

Hokto Kazama, Ph.D.

- Our goal is to understand the computations and the neural mechanisms underlying sensory-guided behavior.

Circuit Mechanisms of Sensory Perception

Team Leader

Sensory processing, Perception

Hokto  Kazama

Research Area

Animals decide and act based on past and current sensory information. The major goal of our lab is to mechanistically understand how neural processing of external input guides behavior and how this processing is modulated depending on the environmental and behavioral contexts.

To achieve this goal, we are using the fruit fly Drosophila melanogaster, which has been increasingly recognized as one of the ideal organisms for investigating the neural circuit basis of behavior. Due to the relatively small number of central neurons, many neurons in the fly brain are identifiable and accessible. We can monitor the responses of these neurons to sensory stimuli by in vivo electrophysiology and imaging. Various genetic tools are available for not only labeling but also manipulating neurons. On the other hand, technologies have been developed to monitor individual flies behaving in a virtual environment where external stimuli can be precisely controlled online. With these data in hand, we will utilize quantitative modeling approaches to better understand the computation and the neural mechanisms underlying behavior at cellular, synaptic and circuit levels.

Selected Publications View All

  1. 1

    Shiozaki HM, and Kazama H: "Parallel encoding of recent visual experience and self-motion during navigation in Drosophila", Nature Neuroscience, 20(10), 1395-1403 (2017)

  2. 2

    Inada K, Tsuchimoto Y, and Kazama H: "Origins of cell-type-specific olfactory processing in the Drosophila mushroom body circuit.", Neuron, 95, 357-367 (2017)

  3. 3

    Badel L, Ohta K, Tsuchimoto Y, and Kazama H: "Decoding of context-dependent olfactory behavior in Drosophila.", Neuron, 91, 155-167 (2016)

  4. 4

    Kazama H: "Systems neuroscience in Drosophila: conceptual and technical advantages.", Neuroscience, 296, 3-14 (2015)

  5. 5

    Oizumi M, Satoh R, Kazama H, and Okada M: "Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit.", Front Comput Neurosci, 6, 14 (2012)

  6. 6

    Kazama H, Yaksi E, and Wilson RI: "Cell death triggers olfactory circuit plasticity via glial signaling in Drosophila.", J Neurosci, 31(21), 7619-30 (2011)

  7. 7

    Satoh R, Oizumi M, Kazama H, and Okada M: "Mechanisms of maximum information preservation in the Drosophila antennal lobe.", PLoS One, 5(5), e10644 (2010)

  8. 8

    Kazama H, and Wilson RI: "Origins of correlated activity in an olfactory circuit.", Nat Neurosci, 12(9), 1136-44 (2009)

  9. 9

    Kazama H, and Wilson RI: "Homeostatic matching and nonlinear amplification at identified central synapses.", Neuron, 58(3), 401-13 (2008)

Press Releases View All