RIKEN's New Research Center for Brain Science: RIKEN CBS Website


Faculty Detail / 研究室詳細

Taro Toyoizumi, Ph.D.

- We investigate the computational principles that govern experience-based organization of neural circuits.

Neural Computation and Adaptation

Team Leader

Modeling of activity-dependent plasticity in the brain, Theoretical neuroscience

Taro  Toyoizumi

Research Area

Our research is in the field of Computational Neuroscience. Computer models are used to study how information is processed in the brain and how the brain circuits adapt to and learn from the environment. We employ analytical techniques from statistical physics and information theory to investigate key functional properties for neuronal circuits. We use these techniques to reduce diverse experimental findings into a few core concepts that robustly explain the phenomena of interest. We are particularly interested in activity-dependent forms of plasticity in the brain, which are known to have large impacts on learning, memory, and development. With the aid of mathematical models, we seek a theory that unites the cellular level plasticity rules and the circuit level adaptation in different brain areas and animal species. Efficacy of neurons to represent and retain information is estimated from the structure and behavior of resulting circuits.

Selected Publications View All

  1. 1

    Isomura T and Toyoizumi T: "Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis", Scientific Reports , 8, 1835 (2018)

  2. 2

    Buckley C L and Toyoizumi T: "A theory of how active behavior stabilizes neural activity: neural gain modulation by closed-loop environmental feedback", PLOS Computational Biology , 14, e1005926 (2018)

  3. 3

    Kuśmierz Ł and Toyoizumi T: "Emergence of Lévy walks from second-order stochastic optimization", Physical Review Letters , 119, 250601 (2017)

  4. 4

    Tajima S, Mita T, Bakkum D, Takahashi H, and and Toyoizumi T: "Locally embedded presages of global network bursts", Proc. Natl. Acad. Sci, 114, 9517-9522 (2017)

  5. 5

    Huang H and Toyoizumi T: "Clustering of neural code words revealed by a first-order phase transition", Physical Review E, 93, 062416 (2016)

  6. 6

    Shimazaki H, Sadeghi K, Ishikawa T, Ikegaya Y, and Toyoizumi T: "Simultaneous silence organizes structured higher-order interactions in neural populations.", Sci Rep, 5, 9821 (2015)

  7. 7

    Toyoizumi T, Kaneko M, Stryker MP, and Miller KD: "Modeling the dynamic interaction of Hebbian and homeostatic plasticity", Neuron, 84(2), 497-510 (2014)

  8. 8

    Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, and Miller KD: "A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity", Neuron, 80(1), 51-63 (2013)

  9. 9

    Toyoizumi T and Abbott LF : "Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime", Physical Review, E 84(5), 051908 (2011)

  10. 10

    Toyoizumi T, Aihara K, and Amari S: "Fisher information for spike-based population decoding.", Phys Rev Lett, 97(9), 98102 (2006)

  11. 11

    Toyoizumi T, Pfister JP, Aihara K, and Gerstner W: "Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission.", Proc Natl Acad Sci U S A, 102(14), 5239-44 (2005)

Press Releases View All